

Compilation of a Network Security/Machine Learning

Toolchain for Android ARM Platforms

by Ralph P. Ritchey, Garrett S. Payer, and Dr. Richard E. Harang

ARL-CR-0739 July 2014

Prepared by

ICF International

7125 Thomas Edison Dr Ste 100

Columbia, MD 21046

Under contract

W911QX-12-F-0052

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position

unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or

approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-CR-0739 July 2014

Compilation of a Network Security/Machine Learning

Toolchain for Android ARM Platforms

Ralph P. Ritchey, Garrett S. Payer, and Dr. Richard E. Harang

Computational and Information Sciences Directorate, ARL

Prepared by

ICF International

7125 Thomas Edison Dr Ste 100

Columbia, MD 21046

Under contract

W911QX-12-F-0052

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid

OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

July 2014

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Compilation of a Network Security/Machine Learning Toolchain for Android

ARM Platforms

5a. CONTRACT NUMBER

W911WX-12-F-0052
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Ralph P. Ritchey, Garrett S. Payer, and Dr. Richard E. Harang

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-CIN-D

2800 Powder Mill Road

Adelphi, MD 20783-1197

10. SPONSOR/MONITOR’S ACRONYM(S)

ARL-CR-0739

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report provides the instructions necessary to prepare the Basic Linear Algebra Subprograms (BLAS) library and LibPCap

library for use on an Android-based device. Instructions are also included that give the additional capability of being able to

compile FORTRAN-based source code to the Android Native Development Kit (NDK) that is not provided by default, which

will be needed to compile BLAS. These packages provide basic functionality for machine learning-oriented network security

applications, and promote the use of the Android platform as a suitable test bed for research into security tools for mobile and

ad-hoc networks.

15. SUBJECT TERMS

Android Toolchain Fortran Security Machine Learning Libpcap pcap

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

24

19a. NAME OF RESPONSIBLE PERSON

Ralph P. Ritchey
A. Report

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-0780

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

1. Background 1

2. Configuration Used 2

3. Android NDK FORTRAN Compiler Support 2

4. Compiling the BLAS Library for Android SDK (Static Library) 5

5. Compiling the LibPCap Library for Android SDK (Static Library) 7

6. Example Application: Compilation 8

7. Example Application: Installation and Execution on an Emulated Android Device 8

8. References 10

Appendix A. fortran4android 11

Appendix B. test_application 15

Distribution List 17

 iv

INTENTIONALLY LEFT BLANK.

 1

1. Background

With the introduction and acceptance of mobile technology into every aspect of daily life, there

is a strong desire to push towards the official use of these devices and the capabilities they

provide in the tactical environment. Just as conventional computer systems need to be protected,

mechanisms need to be developed to protect these mobile devices. Due to the inherently mobile

nature of these devices, and corresponding lack of fixed infrastructure that can be used to

effectively protect them, the first line of defense for such devices must be on the device, itself.

As many of these devices are designed to be lightweight, small, and have a low power draw,

their ability to execute complex and resource intensive algorithms is limited. These resource

constraints have led to an interest in lightweight machine learning techniques for providing such

defenses (see, e.g., [1]). In contrast to most conventional approaches, such as signature-based

methods, these techniques typically can be constructed to allow for a flexible tradeoff between

speed, accuracy, and memory, allowing the algorithm to be fine-tuned to the resources and

criticality of device or platform being protected. Furthermore, in many cases, machine learning

techniques generate complex and non-human-readable internal states (2), which may offer

operational security benefits that signature-based systems often cannot.

In order to provide machine learning-based protection services for mobile devices deployed into

a tactical environment using the Android operating system (currently the most popular mobile

OS), several key libraries are needed. Basic Linear Algebra Subprograms (BLAS) (3), which

provides a fast linear algebra library, is needed for machine learning-based algorithms, which

rely heavily on inner product operations, as do most linear and kernel-based classifiers (including

ELIDe, referenced previously). LibPCap (4), the de facto standard library used for performing

network packet capture, and is needed for enabling a device to monitor live network traffic or

process previously captured network traffic that was saved to a file. The incorporation of such

standard libraries into the Android framework will enable rapid transition of novel algorithms to

Android devices.

We first describe the configuration of the build environment and then discuss the process of

modifying FORTRAN to interoperate with the Android Native Development Kit (NDK) such

that BLAS can be compiled. We then provide instructions for compiling LibPCap onto the

Android architecture. In the final section of this report, the code and compilation process used to

build a small application to test the libraries are provided. The instructions and techniques used

for this application could be used as a basis to build other, more sophisticated command line type

applications for use in an Android environment.

 2

2. Configuration Used

The following is a list of the software and hardware used while getting the libraries compiled and

FORTRAN support added. This system configuration is much larger than what is actually

needed to complete the tasks outlined in this report, so use of a smaller system should suffice.

• Operating System: Redhat Enterprise Linux (RHEL) version 6.5

• Android Development Tools (ADT): version 22.3.0-887826

• Dell Optiplex 960

○ 8GB Memory

○ Intel Core2 CPU

▪ Quad Core

▪ 3.00GHz

3. Android NDK FORTRAN Compiler Support

The Android NDK (5) allows developers to include “native” code (C/C++) in their Android

projects so it can be accessed via the Java Native Interface (JNI) (6) from their Android

application code. This capability can be very useful when a needed library is available, but

porting it to Java will require a considerable amount of time and effort.

While the default capabilities of the NDK are useful, there are situations where the ability to

compile FORTRAN-based code is desirable. In order to support this effort, extra steps must be

taken in order to modify the default NDK to support the FORTRAN programming language.

The basis used for the steps provided in this technical report was found on “Danilo’s Tech Blog”

(7). The blog entry provides updated patches and a shell script that automates the list of manual

steps provided at the “Specific Impulses” (8) blog.

It should be noted that the patches provided at “Danilo’s Tech Blog” are for version “r9” of the

Android NDK. At the time of writing, “r9c” is available; however, the patches and compilation

process do not complete cleanly. Therefore, it is necessary to specifically use the “r9” version of

NDK and the versions specified for other required components until newer patches are available.

The first goal in adding FORTRAN support to the NDK is to obtain and install the correct

version:

 3

1. Download the “r9” version of the NDK: http://dl.google.com/android/ndk/android-ndk-r9-

linux-x86_64.tar.bz2

2. Decompress and untar the downloaded file. Note where it is located—when you call the

ndk-build script, you will need to specify the full path. The script uses the path it was

called from to dynamically configure its environment when run. (It may be possible to add

the script’s path to $PATH; be aware, however, that there may be a slight chance it will not

work correctly, as it dynamically configures its runtime environment based on how it was

initially executed. If a problem is encountered, try re-running it and specifying the full

path.)

3. Download both the shell script and patch file from the “Danilo’s Tech Blog” Web site,

placing both files into the base directory of the NDK (android-ndk-r9).

Now that the NDK has been installed, the next goal is to add FORTRAN support:

1. The first step is the installation of a script (fortran4android) that automates the

patching needed for building the FORTRAN compiler and the compilation process of the

FORTRAN compiler. There are two options available:

a. Option 1: Create a copy of the script provided in appendix A, which is an already

modified version of the script provided at “Danilo’s Tech Blog” (7), in the base

directory of the NDK (android-ndk-r9). Download the patch file and install it

into the same directory as the script.

b. Option 2: Download the shell script and patch file from the “Danilo’s Tech Blog” Web

site, placing both files in the base directory of the NDK (android-ndk-r9).

i. Edit the shell script and either comment out or remove all bits of code that install

(yum install) packages or retrieve them from outside sources ‘wget, svn, etc.).

You will manually obtain them later in another step from appropriate sources.

ii. Near the end of the script where the compilation is performed are two if

statements that will either skip building the toolchain (“... toolchain

appears to be already present.. skipping”) or copying the toolchain

config file (“... toolchain config files already present..

skipping”). Comment out the ‘if/then’ portion but leave the contents of the

‘else’ intact so they will be performed.

2. Within the NDK base directory, create a src subdirectory.

3. Under the src directory, create the following subdirectories and obtain/decompress/untar

the software with the specific version number, as listed for each. Most can be obtained

from the official GNU site; however, a few will need to be obtained from an official Fedora

Web site.

http://dl.google.com/android/ndk/android-ndk-r9-linux-x86_64.tar.bz2
http://dl.google.com/android/ndk/android-ndk-r9-linux-x86_64.tar.bz2

 4

Directory Version Obtain From

binutils binutils-2.22.90 ftp://ftp.gnu.org

build git clone https://android.googlesource.com/toolchain/build build

cloog cloog-0.19.0 pkgs.fedoraproject.org

expat expat-2.0.1 sourceforge.net

gcc gcc-4.8.0 ftp://ftp.gnu.org

gdb gdb-7.4.1 ftp://ftp.gnu.org

gmp gmp-5.0.5 ftp://ftp.gnu.org

isl isl-0.11.1 pkgs.fedoraproject.org

mpc mpc-1.0.2 ftp://ftp.gnu.org

mpfr mpfr-3.0.1 ftp://ftp.gnu.org

ppl ppl-0.11.2 pkgs.fedoraproject.org

.

4. From the base of the NDK directory, execute the fortran4android script. Note the

following items:

a. If the script errors in regard to a few subdirectories not existing, create them manually

and then re-execute the script. Examples may include toolchains/arm-linux-

androideabi-4.8.0 and toolchains/arm-linux-androideabi-

4.8.0/prebuilt.

b. When you apply the patches contained in the ndk-r9-fortran.patch file, the

patch application process may report the application of several patch hunks failing. It

will notify you where the rejected hunks were written out, allowing you to manually

verify if they were applied or not. In most cases they were, although there may be one

or two that did not. (When manually verifying the application of the patches, you will

not be able to go by the line numbers contained in the rejected patch file. You will need

to search for the location where the patch should have been applied based on code

surrounding the actual patch.)

https://android.googlesource.com/toolchain/build

 5

4. Compiling the BLAS Library for Android SDK (Static Library)

Now that the NDK has been downloaded, installed, and updated to support compiling

FORTRAN code, it will now be possible to compile the FORTRAN-based BLAS library. The

following steps provided will result in a statically compiled library. The first goal is setting up

the proper directory structure and obtaining the BLAS library:

1. The compilation of the BLAS library needs to take place in a specifically named directory.

This directory can be included as part of an existing Android application project or it can

be done separately:

a. As part of existing Android project. Within the projects base directory, create a

subdirectory named ‘jni’.

b. Not as part of Android project. Create a jni directory in your preferred location.

2. Download the BLAS library (version marked “LAST UPDATE: Tuesday Apr 19
th

 2011”)

into a directory of your choice and decompress it, which will result in a subdirectory named

BLAS.

3. From the BLAS directory, copy all of the *.f files to the jni subdirectory created in Step

1.

4. Within the jni directory, create an Android.mk file with the following contents:

 6

LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

LOCAL_ALLOW_UNDEFINED_SYMBOLS := true

LOCAL_LDLIBS += -lgfortran

LOCAL_MODULE := blas_LINUX

LOCAL_SRC_FILES := caxpy.f chemm.f cscal.f ctpsv.f dgbmv.f dscal.f dsyr2k.f

dzasum.f scasum.f srot.f ssymm.f strmm.f zdscal.f zher2.f zsyr2k.f ccopy.f

chemv.f csrot.f ctrmm.f dgemm.f dsdot.f dsyrk.f dznrm2.f scnrm2.f srotg.f

ssymv.f strmv.f zgbmv.f zher2k.f zsyrk.f cdotc.f cher.f csscal.f ctrmv.f

dgemv.f dspmv.f dtbmv.f icamax.f scopy.f srotm.f ssyr.f strsm.f zgemm.f

zherk.f ztbmv.f cdotu.f cher2.f cswap.f ctrsm.f dger.f dspr.f dtbsv.f

idamax.f sdot.f srotmg.f ssyr2.f strsv.f zgemv.f zhpmv.f ztbsv.f cgbmv.f

cher2k.f csymm.f ctrsv.f dnrm2.f dspr2.f dtpmv.f isamax.f sdsdot.f ssbmv.f

ssyr2k.f xerbla.f zgerc.f zhpr.f ztpmv.f cgemm.f cherk.f csyr2k.f dasum.f

drot.f dswap.f dtpsv.f izamax.f sgbmv.f sscal.f ssyrk.f zaxpy.f zgeru.f

zhpr2.f ztpsv.f cgemv.f chpmv.f csyrk.f daxpy.f drotg.f dsymm.f dtrmm.f

lsame.f sgemm.f sspmv.f stbmv.f zcopy.f zhbmv.f zrotg.f ztrmm.f cgerc.f

chpr.f ctbmv.f dcabs1.f drotm.f dsymv.f dtrmv.f sasum.f sgemv.f sspr.f

stbsv.f zdotc.f zhemm.f zscal.f ztrmv.f cgeru.f chpr2.f ctbsv.f dcopy.f

drotmg.f dsyr.f dtrsm.f saxpy.f sger.f sspr2.f stpmv.f zdotu.f zhemv.f

zswap.f ztrsm.f chbmv.f crotg.f ctpmv.f ddot.f dsbmv.f dsyr2.f dtrsv.f

scabs1.f snrm2.f sswap.f stpsv.f zdrot.f zher.f zsymm.f ztrsv.f

include $(BUILD_STATIC_LIBRARY)

Now that the BLAS library has been downloaded and the initial setup completed, it can now be

compiled:

1. Change your working directory into the jni subdirectory.

2. Execute the Android NDK build process by executing the following command:

<path_to_Android_NDK)/ndk-build.

3. A listing of the files being compiled will scroll by. The final line of output should be:

“StaticLibrary : libblas_LINUX.a”.

4. The static library file will be contained under:

<path_to_jni_directory>/obj/local/armeabi/.

Now that the compilation of the library has been completed, the library can be copied and

included in other projects as needed. Refer to the section “Example Application: Compilation”

for a very simple example program that was used to test the library.

With one minor change to the Android.mk file (BUILD_STATIC_LIBRARY to

BUILD_SHARED_LIBRARY), it may be possible to build a dynamically compiled library;

however, that result has not been tested.

 7

5. Compiling the LibPCap Library for Android SDK (Static Library)

The following steps describe the process needed to compile LibPCap for use as a statically

compiled library on an Android device.

The first goal will be to obtain the source code for the library and set up the compilation

environment:

1. The compilation of the LibPCap library needs to take place in a specifically named

directory. This directory can be included as part of an existing Android application project

or it can be done separately:

a. As part of existing Android project: Within the projects base directory, create a

subdirectory named jni.

b. Not as part of Android project: Create a jni directory in your preferred location.

2. To be able to compile and utilize the LibPCap network traffic capture library, check out a

version of the source code from Google’s source code repository:

git clone https://android.googlesource.com/platform/external/libpcap

<path_to>/jni

3. By default, the Android.mk file include with the git repository builds a static library. If

a shared library is desired, edit the last line in the file and change

BUILD_STATIC_LIBRARY to BUILD_SHARED_LIBRARY.

4. From within the jni directory execute: <path_to_NDK>/ndk_build.

5. Once the compilation process has been started, the list of files will scroll by as they are

compiled. Depending on what library type (static, shared) is being compiled, the final

library will be located in a different location:

a. Static library:

<directory_containing_jni_directory>/obj/local/armeabi/

b. Shared library:

<directory_containing_jni_directory>/libs/armeabi/

Once the compilation process has been completed, you may then copy the resulting library file to

wherever it is needed. If a shared library is built and the compilation directory (jni) is located

within the Android application project directory, the shared library file will automatically be

included as part of the Android app when it is deployed to an emulator or device.

https://android.googlesource.com/platform/external/libpcap

 8

6. Example Application: Compilation

In this section, the small test application is used to verify that both the BLAS and LibPCap static

libraries that resulted from the previous sections function properly. The steps and code could be

used to form the basis of a more sophisticated command line application if desired.

1. Create a jni directory, which will contain the test application’s code, the libraries

compiled in previous sections, and the makefile.

2. In the jni directory, create the test_application.c file and Android.mk file, as

shown in Appendix B.

3. Copy the libblas_LINUX.a file created in the ‘Compiling the BLAS Library for

Android SDK (Static Library)’ section into the jni directory.

4. Copy the libpcap.a file created in the ‘Compiling the LibPCap Library for Android

SDK (Static Library)’ section, as well as the pcap.h and pcap-bpf.h files provided

when the source code for LibPCap was downloaded into the jni directory.

5. If not already in the jni directory, change your working directory into it.

6. From within the jni directory, execute: <path_to_NDK>/ndk_build.

7. After the compilation has completed, the executable binary test_application will be

automatically copied to the libs/armeabi directory. (libs is contained in the same

directory containing your jni directory and will be created automatically if it doesn’t

already exist.)

7. Example Application: Installation and Execution on an Emulated

Android Device

In this final section, the test application created in the previous section will be copied to an

emulated Android device and executed. The technique used to copy and execute the application

in an emulated device is not specific to this application and may be useful for other applications.

For this section, it is assumed that the Android Developer Tools (ADT) (9) is installed and is

functioning correctly, and that a virtual device in the supplied emulator has been created and

functions. If additional documentation regarding ADT and the emulator is needed, or a deeper

understanding of the techniques and commands used here is desired, the book Android

Developer Tools Essentials (10) contains documentation on the use of ADT, developing apps

 9

and using the emulator that can be highly useful. Information on their installation, configuration,

and use is also readily available on the Web.

1. Using the Android Debug Bridge (ADB) supplied with ADT, open a shell on the emulated

device:

• adb shell

2. Remount the filesystem so the example application can be copied onto it:

• mount –rw –o remount rootfs /

3. Exit the ADB shell:

• exit

4. Copy the test application onto the emulated device:

• adb push test_application /

5. Open a shell again on the emulated device:

• adb shell

6. Run the test application:

• ./test_application

After the test application has completed running, the following information will be displayed:

root@generic:/ # ./test_application

 BLAS Test: The dot product is: 32.000000

 pcap test: Device: eth0

 10

8. References

1. Chang, R. J.; Harang, R. E.; Payer, G. S. Extremely Lightweight Intrusion Detection

(ELIDe); arl-cr-0730; U.S.Army Research Laboratory: Adelphi MD, 2013.

2. Harang, R. Bridging the Semantic Gap: Human Factors in Anomaly-Based Intrusion

Detection Systems. in Network Science and Cybersecurity, New York, Springer , 2014, pp.

15–37.

3. BLAS (Basic Linear Algebra Subprograms), [Online]. Available:

http://www.netlib.org/blas/. [Accessed 13 March 2014].

4. TCPDump & LibPCAP, [Online]. Available: http://www.tcpdump.org/. [Accessed 13 March

2014].

5. Android NDK, [Online]. Available: https://developer.android.com/tools/sdk/ndk/index.html.

[Accessed 11 March 2014].

6. Java Native Interface, [Online]. Available:

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/. [Accessed 11 March 2014].

7. Giulianelli, D. How to Build the gcc Fortran Cross-Compiler for Android (ARM and X86),

12 February 2013. [Online]. Available: http://danilogiulianelli.blogspot.com/2013/02/how-

to-build-gcc-fortran-cross-compiler.html. [Accessed 12 March 2014].

8. Long, M. Android Fortram Step-by-Step Part 2: Building a Custom GCC Toolchain, 11

September 2012. [Online]. Available: http://specificimpulses.blogspot.com/2011/10/android-

fortran-step-by-step-part-2.html. [Accessed 12 March 2014].

9. Developer Tools, [Online]. Available: http://developer.android.com/tools/index.html.

[Accessed 14 March 2014].

10. Wolfson, M. Android Developer Tools Essentials, O'Reilly Media, Inc., 2013.

11. BLAS/LAPACK c++ tutorial/reference?, [Online]. Available:

http://ubuntuforums.org/showthread.php?t=1740797&s=f9c263cef5e57d31af4c70c47e17595

f. [Accessed 14 March 2014].

 11

Appendix A. fortran4android

The following shell script is adapted from the script provided at “Danilo’s Tech Blog” (7). The

script was modified to remove the automated installation of several operating system packages

and the downloading of additional dependencies not provided or made available by the operating

system. This was done to ensure the additional dependencies were downloaded from more

secure, reputable sites.

#!/bin/ksh

PROGNAME=${0##*/}

TRUE=1

FALSE=0

DEBUG="${FALSE}"

VERBOSE="${FALSE}"

export TMPDIR="${TMPDIR:-/tmp}"

TMPFILE="$TMPDIR/tmp${$}.tmp"

VERSION=1.0

function usage {

 print ""

 [["$1" != ""]] && print "You forgot to pass $1 parameter to ${PROGNAME}."

 print ""

 print "Usage: ${PROGNAME} [-dvV]"

 print ""

 print " Where -d = debug mode"

 print " -v = verbose mode"

 print " -V = print version number and exit"

 print ""

}

function clean_up {

 rm -rf ${TMPFILE}

}

while getopts ":dvV" OPTION

do

 case "${OPTION}" in

 'd') DEBUG="${TRUE}" ;;

 'v') VERBOSE="${TRUE}" ;;

 'V') print -u2 "${PROGNAME}: version ${VERSION}" && exit 1 ;;

 '?') usage && exit 1 ;;

 esac

done

shift $((${OPTIND} - 1))

trap "clean_up" EXIT

((VERBOSE == TRUE)) && set -x

BINUTILS_VERSION=2.22.90

GMP_VERSION=5.0.5

MPFR_VERSION=3.0.1

MPC_VERSION=1.0.2

GDB_VERSION=7.4.1

EXPAT_VERSION=2.0.1

ANDROID_NDK="android-ndk-r9"

 12

ANDROID_NDK_VERSION="r9"

ANDROID_NDK_ROOT=/home/pritchey/bin/$ANDROID_NDK

PATCH_REPOS="./"

set how many jobs to use to build the toolchain

NJOBS=1

turn off expat for now...

BUILD_EXPAT="false"

BASE_PATH=$PWD

check our OS.. only tested on Ubuntu 12.04 and Fedora 16/17

GT=`grep -c Ubuntu /etc/issue`

if [$GT -ge 1]

then

 echo "... detected Ubuntu"

 echo "... only tested on 12.04.. YMMV"

 OS_TYPE="Ubuntu"

elif [-f /etc/redhat-release]

then

 echo "... detected Redhat derived OS"

 echo "... only tested on Fedora 16 and 17.. YMMV"

 OS_TYPE="Redhat"

else

 echo "... unsupported OS type!"

 usage && exit 1

fi

check for 64 bit install

OS_ARCH=`uname -p`

test to make sure we're in the right place..

if [["$PWD" =~ "$ANDROID_NDK"]]

then

 echo "OK.. looks like we're in the right place"

else

 if [-d ./$ANDROID_NDK]

 then

 echo "... found NDK in current directory.. continuing"

 cd $ANDROID_NDK

 elif [-f android-ndk-${ANDROID_NDK_VERSION}-linux-x86.tar.bz2]

 then

 echo "... extracting existing NDK archive"

 tar -jxvf android-ndk-${ANDROID_NDK_VERSION}-linux-x86.tar.bz2 > /dev/null

 cd $ANDROID_NDK

 else

 echo "...extracting downloaded NDK archive"

 tar -jxvf android-ndk-${ANDROID_NDK_VERSION}-linux-x86.tar.bz2 > /dev/null

 cd $ANDROID_NDK

 fi

fi

if [["$PWD" =~ "/$ANDROID_NDK"]]

then

 echo "...NDK acquired.. continuing"

 ANDROID_NDK_ROOT=$PWD

else

 echo "...can't get into the NDK install directory.. stopping"

 exit 1

fi

SOURCE_PATH=$ANDROID_NDK_ROOT/src

if [-d $SOURCE_PATH]

 13

then

 echo "src directory exists.."

else

 echo "making src directory.."

 mkdir $SOURCE_PATH

fi

cd $SOURCE_PATH

apply fortran patch

set -x

cd $ANDROID_NDK_ROOT

patch -bNp0 < $PATCH_REPOS/ndk-${ANDROID_NDK_VERSION}-fortran.patch

run the build..

for toolchain in arm-linux-androideabi-4.8.0 x86-4.8.0

do

 short_toolchain=$(echo $toolchain | sed 's/-4.8.0//')

 cd $ANDROID_NDK_ROOT

 if [$OS_ARCH == "x86_64"]

 then

 ./build/tools/build-gcc.sh --try-64 $PWD/src $PWD -j$NJOBS $toolchain

 else

 ./build/tools/build-gcc.sh $PWD/src $PWD -j$NJOBS $toolchain

 fi

 echo "... copying toolchain config files from 4.6 compiler"

 cp toolchains/${short_toolchain}-4.6/config.mk toolchains/$toolchain/.

 cp toolchains/${short_toolchain}-4.6/setup.mk toolchains/$toolchain/.

 cd toolchains/$toolchain/prebuilt

 if [-d linux-x86_64]

 then

 echo "... symlinking 4.8.0 toolchain linux-x86_64 to linux-x86"

 if [-L linux-x86]

 then

 echo "... symlink already exists.. skipping"

 else

 ln -s linux-x86_64 linux-x86

 fi

 fi

done

echo "Done."

exit 0

 14

INTENTIONALLY LEFT BLANK.

 15

Appendix B. test_application

The following C source code was used to test the BLAS and LibPCap libraries to ensure they

worked on an Android device. The section of code used for testing the BLAS library was found

on the Ubuntu Forums Web site (11), posted by 3Miro.

Android.mk:
LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := blas_LINUX

LOCAL_SRC_FILES := libblas_LINUX.a

include $(PREBUILT_STATIC_LIBRARY)

include $(CLEAR_VARS)

LOCAL_MODULE := pcap

LOCAL_SRC_FILES := libpcap.a

include $(PREBUILT_STATIC_LIBRARY)

include $(CLEAR_VARS)

LOCAL_MODULE := test_application

LOCAL_SRC_FILES := test_application.c

LOCAL_STATIC_LIBRARIES := blas_LINUX pcap

include $(BUILD_EXECUTABLE)

test_application.c:

#include <stdio.h>

#include <stdlib.h>

#include "pcap.h"

double ddot_(const int *N, const double *a, const int *inca, const

double *b, const int *incb);

int main(int argc, char** argv){

 double *a = (double*) malloc(3 * sizeof(double));

 a[0] = 1.0; a[1] = 2.0; a[2] = 3.0;

 double b[3] = { 4.0, 5.0, 6.0 };

 int N = 3, one = 1; // one really doesn't look good in C

 double dot_product = ddot_(&N, a, &one, b, &one);

 printf("\n BLAS Test: The dot product is: %f \n",dot_product);

 char *dev, errbuf[PCAP_ERRBUF_SIZE];

 dev = pcap_lookupdev(errbuf);

 if (dev == NULL) {

 fprintf(stderr, "\n pcap test: Couldn't find default device:

%s\n", errbuf);

 return(2);

 }

 16

 printf("\n pcap test: Device: %s\n", dev);

 return 0;

 17

 1 DEFENSE TECH INFO CTR

 (PDF) ATTN DTIC OCA

 2 US ARMY RSRCH LABORATORY

 (PDF) ATTN IMAL HRA MAIL &

 RECORDS MGMT

 ATTN RDRL CIO LL TECHL LIB

 1 GOVT PRNTG OFC

 (PDF) ATTN A MALHOTRA

 1 US ARMY CYBER COMMAND

 (PDF) ATTN 24 C PRESSLEY

 8 US ARMY RDECOM CERDEC

 (PDF) ATTN RDER IWI

 G BERTOLI

 K BOYLE

 ATTN RDER IWI SP

 P ROBB

 S BLAIR

 ATTN RDER STI IS

 J SANTOS

 ATTN RDER STI

 S LUCAS

 ATTN RDER STI TN

 G ZIGLICH

 M MAGENHEIMER

 5 US ARMY RSRCH LAB

 (PDF) ATTN RDRL CIN D

 B RESCHLY

 J COLE

 T PARKER

 ATTN RDRL CIN S

 C SMITH

 ATTN RDRL CIN D

 L M MARVEL

 2 US ARMY RSRCH LAB

 (PDF) ATTN RDRL SLE I

 A REVILLA

 D LANDIN

 10 US ARMY RSRCH LAB

 (PDF) ATTN RDRL CIN

 A KOTT

 ATTN RDRL CIN

 D KELLY

 ATTN RDRL CIN D

 W GLODEK

 R ERBACHER

 H CAM

 S HUTCHINSON

 R HARANG

 R RITCHIE

 P GUARINO

 ATTN RDRL CIN S C ARNOLD

 18

INTENTIONALLY LEFT BLANK.

